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ABSTRACT

Robotics is a rapidly expanding field that needs software engineers.

Most of our undergraduates, however, are not equipped to manage

the unique challenges associated with the development of software

for modern robots. In this work we introduce a course we have de-

signed and delivered to better prepare students to develop software

for robot systems. The course is unique in that: 1) it emphasizes the

distinctive challenges of software development for robots paired

with the software engineering techniques that may help manage

those challenges, 2) it provides many opportunities for experiential

learning across the robotics and software engineering interface, and

3) it lowers the barriers for learning how to build such systems. We

describe the principles and innovations of the course, its content

and delivery, and finish with the lessons we have learned.

CCS CONCEPTS

•Computer systems organization→Robotics; •Applied com-

puting → Education.
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1 INTRODUCTION

The robotics  eld has grown steadily for the last two decades. The
number of research initiatives in robotics around the world has
surged and now includes staple programs like the US DARPA Chal-
lenges [1, 3, 29], US National Robotics Initiative [16], the Together
Through Innovation robotics-related program in Germany, and
Japan’s New Robot Strategy [24]. Such research efforts combined
with an emerging market have energized the robotics industry,
which is projected to grow by 25% between 2020-2025 [2]. This 
growth is expected to result in new jobs requiring specialized knowl-
edge in robotics and in the software that underlies such systems.
Calls to prepare our software engineers for this robotic revolu-

tion [32] have been met primarily through specialized graduate-
level courses or through massive open online courses (MOOCs).
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The graduate-level courses are either focused on particular aspects

of robotics such as AI, control theory, or mechatronics [9, 12, 17], or

have broader topical coverage but on specific domain platforms [22].

However, these classes overlook the fact that robotics heavily relies

on software and the development process to generate that software.

Thus, graduates of these classes lack the key software engineering

(SE) principles to designing and developing real-world robotic appli-

cations. MOOCs, such as the “Robotics Software Engineer” Udacity

course [4], aim to scale up the number of students introduced to

these topics, though graduation rates seem to temper that potential

[26]. Furthermore, MOOCs fall short in that they aim for a breadth

of applicants, meaning graduates may lack in other fundamental

SE aspects. For example, the aforementioned course does not call

for any computer science (CS) prerequisites.

At the undergraduate level, traditional CS curricula typically

offer few opportunities to familiarize oneself with basic concepts,

algorithms, and practices required for the software development

of robotic systems, despite the inherent value of these systems

as a means to connect many facets of engineering [6]. Thus, for

example, required CS courses typically do not cover how to rep-

resent the state of a system that includes not just the cyber ele-

ments but also the physical ones, the algorithms to manage the

noise and uncertainty associated with sensors and actuators, or

the architectures that rely on large middleware layers to conquer

system complexity [12]. On the other hand, elective undergraduate

courses specializing in robotics usually focus on particular aspects

of the robot system pipeline. For example, courses on embedded

systems [10, 18], unique issues arising from discrete and continuous

behaviors [8, 19], vision and signal processing [21, 33], or planning

and control [5, 11, 28] examine that specialty without addressing

the unique and foundational aspects of designing and implementing

the software for such systems.

With the current landscape of CS and SE education and oppor-

tunities in robotics, we set the goal of developing a course that

would enable upper-level undergraduate students in com-

putational disciplines to gain expertise on foundational as-

pects of software development for robotics. Underlying this

goal is the (yet untested) expectation that the knowledge acquired

will better prepare students to develop robot systems and that the

material covered will make them consider this new career path.

Achieving that goal is not straightforward for a variety of rea-

sons. First, robotics is a multidisciplinary and rapidly expanding

field, so determining the essential elements most relevant to cost-

effective robot software development is challenging. Second, there

is a constant tension of how to distribute the emphasis between

robotics and SE topics and practices. Further, identifying faculty

that feel comfortable balancing that tension is particularly compli-

cated as there is no guideline to support such an endeavor. Third,

SE and robotics can be more engaging and effectively taught when

applied in practice, yet there is no available integrated platform
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Table 1: Course design and delivery guiding principles.

Principle

P1 Prioritize the challenges of robotics that are unique from other CS systems

P2 Focus on the unique software engineering techniques and practices required by robot system development

P3 Provide opportunities for experiential learning to encourage students to practice and reflect on their experience

P4 Lower adoption barriers by making the material more accessible

P5 Reinforce foundational material across both SE and robotics

that enables experiential learning across both areas. Fourth, typi-

cal robotics courses can require significant upfront investment in

equipment, as well as personnel to maintain those systems once in

place. This limits the adoption of such courses only to institutions

or students with the available resources. Even then, those systems

are difficult to transition beyond their original associated courses.

For the last two years, we have designed, delivered, and refined

a course meant to achieve the stated goal while addressing the

enumerated challenges. The next sections describe the principles

that guided the design and delivery of the course, the course’s key

innovations, its structured content and delivery strategies, and the

lessons we learned in the process.

2 PRINCIPLES

The course design and delivery are guided by a set of principles

inspired by our software engineering experiences building and

deploying robot systems, our collaborations with peers in software

engineering and robotics from academia and industry, and the gaps

we identified in the curriculum. The principles listed in Table 1, and

described below, have stayed consistent over the last two deliveries

of the course.

P1. Prioritize the challenges of robotics that are unique from

other CS systems. The field of robotics is vast, and it brings to-

gether many challenges from different disciplines. However, from

a software development perspective, not all of the topics and prac-

tices have the same relevance. We specifically prioritized topics and

practices that we identified as unique to robotics such as those asso-

ciated with sensing, perception, planning, control, and actuation in

the world, with special attention to noise and uncertainty manage-

ment raised when sensors and actuators operate in the real world.

We include emerging issues as well, such as increasingly relevant

ethical concerns as robots are integrated in our lives. We do not aim

to cover all algorithms and techniques at each stage of the robotic

pipeline, but rather canonical ones to highlight their challenges

and the general approaches to develop software for them.

P2. Focus on the unique software engineering techniques

and practices required by robot system development.We as-

sume students have had either a software engineering course or an

equivalent software development experience. However, this course

goes beyond that baseline, emphasizing the complex notions of

system state imbued in robot systems, the specialized robot ar-

chitectures and design principles to deal with issues like leaky

hardware abstractions and state machines, the extensive use of

sophisticated APIs and component reuse, the standardization of

types, and the emphasis on simulation as a tool for development and

testing. The course reinforces conventional software development

practices students may have already seen, from modularization to

configuration management, and stretches students’ understanding

of their application through the labs.

P3. Provide opportunities for experiential learning to encour-

age students to practice and reflect on their experiences. At

the end of the course, we want students to have an understanding

and appreciation for a typical pipeline of a robotic system, together

with the relevant software engineering techniques to support the

development of that pipeline. By delivering practical experience

combined with frequent reflection, we aim for students to feel com-

fortable and more confident that they have the skills to approach

new robotics projects in the future.

P4. Lower adoption barriers by making the material more

accessible. Financially, logistically, and in terms of prior knowl-

edge, robotics can be a challenging field in which to get started. We

target a broad audience of undergraduate CS students for whom

this may be their first introduction to robotics (although students in

computer engineering and systems engineering have successfully

completed this course as well). This course aims to lower the barrier

to entry for robotics so that it is approachable for any student with

a general CS background and access to either a laptop or school

computing resources such as department computers.

P5. Reinforce foundational material across both SE and ro-

botics. Though the subjects of SE and robotics are not often pre-

sented together, each can reinforce the other. We aim to deliver

the course in a manner that promotes the reinforcement of com-

mon themes, leaves students with a solid foundation for approach-

ing future endeavors in robotics, and that ties into their existing

knowledge base of software engineering, which is more endemic

to computer science curricula.

We describe how the course fulfills these principles in Section 3

with further detail and examples in Sections 4 and 5.

3 DESIGN AND PEDAGOGIC INNOVATIONS

Throughout the course development and delivery, we were guided

by the principles in Table 1. When incorporated into the course’s de-

sign, these principles resulted in a set of pedagogic innovations that

we now present along with the corresponding principle(s) in paren-

theses. Table 2 summarizes the relationship between principles and

innovations.

I1. Cover robotics fundamentals. (P1, P2) We want students

to complete this course with a broad understanding of the basic

concepts of robotics and the challenges faced in their application.

To do so, we start by emphasizing in the lectures the differences be-

tween robots and more traditional systems, including development

life-cycle differences. The lab sequence that parallels the lectures

begins by exploring the Robot Operating System (ROS) [25] to give

students a practical framework for understanding a robotic system’s
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Table 2: Design innovations to implement course principles.

Innovation P1 P2 P3 P4 P5

I1 Cover robotics fundamentals � �

I2 Offer different levels of abstraction � �

I3 Pair SE and Robotics topics throughout the course � �

I4 Enable students to make design and implementation decisions in labs and project � �

I5 Make use of demonstration, conversation, and checkpoints � �

I6 Use a drone simulator for hands-on experience � � �

I7 Incrementally build concepts to minimize required background knowledge in robotics � �

I8 Incorporate flexibility into the course schedule and allow for self-paced labs � �

key architectural components. Then, we introduce students to the

robotics pipeline including the concepts of perception, planning,

control, and localization, all using ROS. We present key approaches

and algorithms to concretize each phase. This means, for exam-

ple, that although there are whole textbooks on mobile planning

algorithms, we only cover a handful of representative reactive and

model-based algorithms to illustrate the range of possibilities.

I2. Offer different levels of abstraction. (P1, P4) Introducing

physical, hardware, and software abstractions enables us to over-

come the complexity of robot systems and present the challenges

incrementally. For each new covered concept, we abstract away

all aspects that are not immediately relevant. Then, as the course

progresses, the abstractions are refined, and more details are incor-

porated. This progression allows students to become comfortable

with the concepts without being overwhelmed. For example, the

simulator includes a waypoint controller in the introductory labs,

allowing the students to control the system by sending it simple

target waypoints in an empty world. As we expose the students

to physical concepts like roll, pitch, yaw, and thrust, and control

algorithms they are able to create their own sophisticated controller.

In subsequent lectures as we introduce more complex worlds with

walls, they need to develop planning components that provide high-

level guidance to their controller. We carry this refinement process

forward into lectures and labs.

I3. Pair SE and Robotics topics throughout the course. (P1,

P2) When introducing a robotics concept, we also introduce closely

related and required SE concepts. Once the connection is made,

we highlight the importance of the SE concepts as they pertain to

robotics and how they must be adjusted to the unique challenges

introduced by this domain. This helps to connect challenges and so-

lutions, while also highlighting key areas where students can apply

their SE expertise in this domain. For example, the familiar concept

of code reuse is discussed alongside modular hardware, concepts

from automata are used when explaining robot state machines for

control, and design specifications and unit tests are discussed when

validating robotics components. Throughout this effort, emphasis

is put on the ROS framework, and its array of tools to support

software development. We use ROS because it is commonly used

in research and industry, contains a high-level and robust API for

robotics including standardized message types, adheres to a spe-

cialized architecture, and comes with sophisticated tool support for

building and executing these systems.

I4. Enable students to make design and implementation de-

cisions in labs and project. (P3, P5) We use weekly labs in which

students apply the concepts learned in lectures to reinforce their

understanding of course material. To encourage students’ mastery

of the concepts, we structure the labs with a set of objectives and

starter code, and students make individual design decisions in the

implementation of their solutions. We provide skeleton code in

each lab and in the final project that gives a description of the input

and output of different functions. Beyond that, students can use

data structures and coding conventions they are most familiar with,

alongside what they have learned in the course, to implement their

solutions. For example, in Lab 5, students are required to implement

a perception node for object identification. The students are free to

decide how this is done, whether is using color matching, neural

networks, edge detection, or numerous other object recognition

approaches and libraries. This setup allows students to progress

through the lab at their own pace, while also having the freedom

to further explore different pieces of the labs to greater depth.

I5.Makeuse of demonstration, conversation, and checkpoints

(P3, P5) We design checkpoints across lectures, labs, and the

project. For example, each lecture includes two checkpoints that

allow students to work in small groups to address a prompt defin-

ing a problem or an exercise that tests their understanding of a

concept when applied to a different context. These prompts facil-

itate the reflection and reinforcement of fundamental concepts,

foster cohorts of collaborating students, and assist the instructor

in identifying aspects requiring further elaboration. Similarly, we

split each of the labs into multiple checkpoints. We structure labs

around building up a drone system to extend its functionality and

handle various tasks throughout the semester. The first checkpoint

applies the learned concept in a synthetic and minimal applica-

tion. The latter checkpoints then focus on integrating the concept

within the larger system. We encourage students to show us their

checkpoints as they progress to avoid getting stuck or sidetracked

early in the assignment. We also ask follow-up questions at each

stage to ensure that the student has adequately grasped the con-

cept and is well-equipped to move forward. For example, in the

lab concerning robot control, the drone is tasked with following

a ship. One of the checkpoints is: “Showcase your drone working

when the ship is stationary, moving in a straight line, and moving in

a zigzag.” Upon completion, each student’s lab is graded through

an individual system demonstration to a teaching staff member.

The course culminates with a final integrative project, and students

present their solutions to the class on the last day.
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I6. Use a drone simulator for hands-on experience. (P3, P4,

P5) Integrating physical hardware such as specific robotics plat-

forms incurs upfront costs of money and time. This creates logistical

difficulties even before the course has begun and can take up time

throughout the semester as hardware is damaged or wears out and

requires special-order items to fix or replace. We thus created a

simulator, described in Section 5.2, that is extremely lightweight yet

highly functional, with realistic drone kinematics and a variety of

sensors including a downfacing camera, LIDAR, GPS, and pressure

sensors. We distribute the simulator by packaging it inside a virtual

machine (VM) so that students can run the simulator on their own

machines regardless of OS.We find that using such a simulator in an

educational setting has several advantages: 1) it allows for complete

control over hardware behavior, including the amount of noise and

unpredictability it exhibits, 2) it allows for the “hardware” to be

reliable in that it does not break down or wear out over time and

behaves the same under comparable circumstances, 3) it cuts down

on time spent maintaining and sourcing physical hardware, instead

allowing for focus on the fundamental challenges that they present,

such as noise and imprecision, 4) simulators are more conducive

to teaching an introduction to robotics course, as the abstractions

discussed in I2 allow for adjustment of noise, sensor accuracy, and

other parameters, and 5) simulators require less time, space, and

specialized knowledge to maintain, and they can be delivered en-

tirely remotely, allowing for a successful deployment during the

COVID-19 pandemic. Although students do not gain hands-on ex-

perience from a hardware perspective, i.e., how to physically set

up, maintain, and handle a robot, simulation aims to prepare them

to pick up these skills quickly in the future.

I7. Incrementally build concepts to minimize required back-

ground knowledge in robotics. (P4, P5) To ensure that the

course is widely accessible to general CS students, we assume only

a foundation of basic SE and knowledge of operating systems as

a prerequisite. We structure the robotics concepts to build off of

each other so that students need only focus on the current concept

while building on previously covered ones. This helps students to

piece together significant parts of the system pipeline as the course

progresses. For example, understanding the simulation environ-

ment and ROS communication is a prerequisite to implement the

different robot states, knowing the robot state aids in developing

accurate sensor filtering and fusion models, and having filtered data

is key to to interpret the environment in which the robot operates.

Note that the different levels of abstractions introduced in I2 are

necessary but not sufficient to support this innovation. The course

structure and code reuse are key enablers to limit the portions of

new material and code that is unfamiliar to the students in each lab.

This idea guided the development of the skeleton code we provide

to the students; for each lab, we maximize code reuse, allowing

students to reapply their understanding of previous code modules

to future labs. This allows students to focus on the new material

and experiment with the new concepts.

I8. Incorporate flexibility into the course schedule and allow

for self-paced labs. (P3, P4) We anticipate that students will ar-

rive in this course with a variety of prior experiences. Flexibility

built into the course calendar lets students progress at their own

pace. Those who need to catch up have additional time for assis-

tance while those coming to the course with prior knowledge can

Figure 1: A robot’s conceptual architecture.

sharpen their skills. Additionally, we provide students access to

recorded lectures asynchronously, allowing them to review the ma-

terial on their own time and at their own pace. All TAs have office

hours spaced throughout the week, allowing for students to come

with questions on assignments or get checked off early and move

forward. Since checkpoints allow for multiple attempts, students

can learn from the feedback they received and resubmit the lab. We

note that this built-in flexibility was an asset when teaching during

the COVID-19 pandemic.

4 COURSE STRUCTURE

Developing software for robot systems is challenging as robots

must sense, actuate in, and represent the physical world. Sensing

the physical world is usually noisy, actuating in and on the world is

often inaccurate, and the knowledge and representation of theworld

is incomplete and uncertain. This course aims to enable students to

explore and become familiar with robotic and SE approaches to cope

with those challenges. This section describes how we structured

the course while keeping in mind both the design principles and

innovations presented in previous sections.

4.1 Schedule Overview

The topics we cover in the course are shown in Table 3. The topics’

content are defined by the course scope, driven by our aim to give

the students coverage of robotics fundamentals (I1) to allow

them to make design and implementation decisions (I4) for a

complete robot solution. We structure the course in such a way as

tominimize the amount of prerequisite knowledge required

by the students (I7). This requires that we start from the ground

and build up the concepts through different levels of abstrac-

tions (I2). We start by introducing the students to the development

features and software machinery and conclude with advanced ro-

botics topics. Another unique feature of this class is the idea of

reinforcing what the students learned in class through weekly labs.

The topics for the labs reflect the lecture material for that week.

However, they aim to provide amorepractical approach through

a simulator (I6) while also helping students reinforce and retain

the concepts learned through demonstrations, conversations,

and checkpoints (I5).

Table 3 also shows how the topics incrementally expand in scope

and reach, providing students with the knowledge to ultimately

implement a complete robot pipeline as shown in Figure 1. Note that

we introduce lectures and labs rarely seen in CS programs, from

the integration of robotics and software engineering principles in

the same lectures and labs, to ethics in robotics labs and discussions

with industry leaders.
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Table 3: Course schedule showcasing the lab lecture pair-

ings.

Lecture Topic Lab

1 Introduction Setup and basic ROS

2

Distinguishing

development

features

ROS processes, communication,

and simulation environments

3
Software

machinery
Types and machines

4
Robot and world

semantics
Sensor filtering and fusion

5 Perception
Perception through image

analysis

6
From the trenches:

industry speaker
Robotics and ethics

7
Controlling your

robot
Controlling and testing robots

8 Making plans (Free day)

9
Localization and

navigation
Mapping and motion planning

11 Transformations Transformations

12 Advanced robotics (Holiday)

13 Project Definition Project Development

14 Project Development Project Presentations

4.2 Lectures

Lectures usually begin with a 2-minute student presentation of a

robot of their choice, generally playing a video of the robot while

the student does a voice-over describing the robot, its purpose,

the technical challenges it overcomes, and its societal implications.

These presentations contribute to demonstrations and conver-

sations (I5) with the students. These demonstrations of current

robots also serve as an excellent target to refer back to during the

lectures, where for example, the exploration displayed by the robot

in the video can be discussed during the navigation and mapping

lecture. This also serves as a pleasant way to keep students engaged

and make students feel more comfortable talking in front of the

class.

Following the presentation, the instructor gives a lecture on the

day’s topic. We developed a set of 10 core lectures that pair SE and

robotics (I3), while also maintaining the incremental building

of concepts tominimize required backgroundknowledge (I7)

in lectures. The first 3 lectures provide fundamental building blocks

describing the development challenges in robotic systems and how

they differ from more traditional software applications. We start

by emphasizing the richer notions of state and how robots include

the cyber state, electrical-mechanical state, and a representation of

the physical environment in which the robot operates (as opposed

to traditional systems only considering the cyber state). In later

lectures, we revisit this concept by building on how to encode such

notions of state.

Next, we delve into how the development life cycle in robotics

differs from pure software, in particular the points of contention

and interfacing between software and hardware development. We

cover a variety of topics from specifications which include richer

notions of state and timeliness, to testing, which consists of the

intensive use of simulation. The last foundational lecture covers ar-

chitectures and design patterns for robotics, including synchronous

and asynchronous mechanisms, the difference between open and

closed-loop, and the extensive use of abstractions that are often

leaky. We also cover the use of state machines, which are exten-

sively used in robotics, and let us reiterate different notions of

robot state. Follow-up lectures and labs revisit these topics as we

use those foundational elements throughout the robotic pipeline

and build more complex systems incrementally.

The rest of the lectures are aligned with fundamental el-

ements of the robot development pipeline (I1) shown in Fig-

ure 1, from sensing and perception to motion planning and control.

These topics are integrated with the SE practices that are most

relevant to those components. These lectures are meant to explain

the challenges in each pipeline component cleanly, describe the

insights to address the challenges, and at least a couple of canonical

algorithmic approaches to solve them. So, for example, in the area

of sensing, we briefly cover sensor families (spending 20 minutes

instead of the 1 or 2 classes as a robotics course would do) and

instead spend more time on the principles to manage noise through

calibration and various forms of filtering, and on the built-in data

types and APIs available to support those tasks. Contrary to other

robotic courses, throughout these lectures, we also attempted to

de-emphasize equations and instead focus more on snippets of code

to better fit the CS student body.

The lectures usually contain two exercises, each taking around

2-5 minutes to complete. These exercises are generally solved in

small groups to encourage students to interact and discuss different

ideas. For example, in the control lecture, students are asked to

sketch an algorithm for a basic bang-bang controller to steer a

bicycle and reflect on the limitations of such controller, and then to

define the elements of a cruise control controller. These exercises

not only facilitate student engagement but also give us insight into

what elements require further explanation.

We have selected one lecture from the course to use as an exam-

ple case. The following section describes how this lecture imple-

ments the innovations described in Section 3.

4.2.1 Example Lecture: Robotic Architecture and Software Machin-

ery (Week 3). This lecture aims to introduce the fundamental con-

cepts related to robotics architecture and modeling machinery in

robotics. Robotics software is primarily asynchronous and event-

driven and made up of many subsystems. These subsystems operate

with different timelines and levels of certainty in a closed loop, refer

to and update a complex system state, and must be managed in

relation to the system’s overall goals.

This lecture begins with the basic conceptual architecture of

robotics (sensing-computing-acting, similar to Figure 1), incremen-

tally incorporating richer notions of state to encode more of the

system and the environment. Next, it covers critical domain-specific

architectures from deliberative and monolithic to hybrid and prob-

abilistic ones, bringing out the design tradeoffs over different sce-

narios applied first to an autonomous vacuum cleaner but then also

discussed in the context of a modern autonomous vehicle. Archi-

tectures are followed by the coverage of system models using finite
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state machines (FSMs). We assume that most students have seen

an FSM before, so this material focuses primarily on what types

of states they can encode, how they can assist in understanding

the real world and decoupling behaviors, how they are represented

in code, and how to scale them up to support the development of

complex robotic systems.

This lecture fulfills several of our design innovations. First, as

one of the first lectures focusing on technical details of the ro-

botics pipeline, it introduces the students to the fundamen-

tals of robotics architectures (I1) which lays the foundations

for future lectures delving into different aspects of robotics

pipeline (I7). Second, by relating these concepts to simple robotics

systems the students are familiar with, i.e. the autonomous vac-

uum cleaner, the lecture helps foster a conversation with the

students to internalize the concepts (I5). Finally, we pair the

concepts of systemmodels and FSMs (I3), allowing students to

transition their prior knowledge toward application in robotics.

4.3 Labs

We design the labs as a series of challenge-based learning opportu-

nities [34] in connection with the lecture topics. We coordinate labs

with lecture topics to reinforce concepts introduced in the most

recent set of lectures. This sets up the features and challenges

of robotics through an SE lens (I3) and reinforces foundational

concepts. The labs, similar to the lectures, are structured with incre-

mental and increasing complexity (I7). All labs are built around

the same core system: a micro-drone with realistic kinematics and

dynamics, operating in a simulator further described in Section 5.

First, the lab introduces a robotics feature or challenge with a short

example exercise. Then, it is integrated into the drone system and

paired with an SE concept. We space checkpoints throughout

the lab (I5), allowing TAs to check students’ work in stages such

that they do not veer off track. This also gives students confidence

before moving onto the next checkpoint as their work is reviewed as

they work at their own pace (I8). The TAs checked students for

understanding of the newly introduced robotics concept and how

they have used one or more SE concepts to address it throughout

the lab. This includes identifying the strengths and weaknesses of

their solution and what they would need to improve their solution.

Points are awarded for each set of checkpoints, and students are

allowed multiple attempts to complete them, either during the lab

or during office hours before the next lab.

As the course progresses, labs increase in complexity based on

what the students have already learned. Each new lab builds on

previously taught SE concepts and functionality implemented in

previous labs. This helped inform the ordering of the lecture/lab

topics so that the labs could build on each other (I7). For example,

students are first taught the publish-subscribe architecture and

node structures in ROS using a simple example before applying

them to the drone simulation. As a result, SE fundamentals such

as software architecture and state modeling are introduced early

on and revisited in following labs. Code for the successive labs

are released incrementally to increase complexity throughout the

course, incrementally activating drone functionality as needed (I2).

For instance, topics such as perception and transforms in the world

frame required enabling a simulated “down-facing camera” on the

drone and a transformed tower positioning system respectively;

these features are not included initially to allow students to grasp

simpler sensors and concepts without being overwhelmed.

We have selected two labs from the course to use as example

cases and highlight the progression between labs. The following

sections describe how these labs implement the above innovations.

4.3.1 Example Lab: Software Machinery (Week 3). This lab applies

the concepts of state representation, environment abstraction, and

modeling covered during the lectures while expanding into some

of the more complex topics in ROS. Although we try to instill good

SE practices throughout the course, this lab’s emphasis is on SE

principles that are most useful in robotics (I3), from imple-

menting finite state machines to keep track of the robot’s state to

enabling capture and replay at the ROS level to support debugging

of complex states. More specifically, the learning outcomes of this

lab are:

• How to add ROS nodes to an existing system

• How to keep rich logs of messages between nodes

• How to track and implement states with an FSM

• How to use ROS type messages, parameters, and services

To incorporate these goals into the lab, we ask students to de-

velop a safety node for the drone. The correctly-implemented safety

node monitors both the commands sent to the drone and the drone’s

position. The safety node keeps track of the drone state and only

accepts waypoints within the geofence to be sent to the drone when

the drone is in a hovering state and thus able to accept commands

(as shown in Figure 2). This lab also highlights the importance

of developing code that is easily parameterizable, allowing

for easy reuse (I3). Accordingly, the predefined area is left as a

parameter that can be easily changed depending on the student’s

needs. This lab also requires students to keep logging informa-

tion about the drone’s state to debug any issues that arise

(I1), for example, a drone accepting commands when not in the

correct state. For both the modeling of the state and environment,

as well as logging, the students are given the freedom to imple-

ment their own solution (I4) within the confines of the skeleton

code. This aids the teaching process, as poor design decisions such

as logging only to a terminal using print statements can be pointed

out and rectified during the checkpoint discussion (I5).

4.3.2 Example Lab: Controlling and Testing Robots (Week 7). At this

point in the class, students have been exposed to the foundational

material and exercised control of the robot through waypoint com-

mands provided through our API. That is, given a waypoint, the

drone’s internal controllers would move the drone accordingly. For

this lab, students need to develop their own control layer to position

the drone in relation to a moving ship using various sensors. The

learning objectives of the lab ar as follows:

• How to implement a PID controller

• How to tune each PID term

• How to use the ROS testing framework

The lab’s objective is to build a subsystem so that the drone can

follow a moving ship at sea. The drone will first head towards a

ship using a coarse approximation of the ship’s location provided

by the ship’s beacon and a waypoint follower from previous labs.

Then, when the ship is within the sights of the drone’s down-facing
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Figure 2: We showcased both safety and states using a cage

system that blocks the drone from leaving a set area.

camera, the drone adjusts its position using its PID controller to

try to center itself on top of the ship. To support this objective,

we provide a popular PID controller class [7] and activate multi-

ple drone sensors for more precise positioning. The student then

needs to instantiate the PID class, fuse data from multiple sensors

for positioning, tune the controllers, and test the implementation

to make sure the system behaves correctly. Students can choose

their own PID tuning strategies as long as they perform within the

bounds of provided rostests [27]. Students are also required to de-

sign additional rostests to showcase the features of the ship-follower

drone and justify why these tests are necessary and suitable for

the problem definition. This is done to give the students more de-

sign autonomy and to encourage them to think more deeply about

demonstrating successful functionality in a robotics context.

This lab fulfills the design innovations of this course in several

ways through its design and delivery. First, it involves a funda-

mental aspect of robotics (I1), the notoriously tricky tuning of a

PID controller complicated by sensors operating at different rates.

Second, its implementation as a reusable module combined with

both unit and system tests demonstrates sound SE principles (I3).

Third, the introduction of this lab comes at a time in the course

when students have already been introduced to sensors, state, and

perception, giving them the fundamental tools required to imple-

ment their own solution (I4). To show that they have completed

the lab challenges, the students then design and write tests to con-

firm that their solution works as expected. Students are also given a

set of tests to self-check as they reach incremental checkpoints and

have access to circulating staff during lab time and during office

hours throughout the week for support allowing for flexibility

and working at their own pace (I8). The entire lab can be com-

pleted within the VM, including running unit tests and using the

simulator (I6).

4.4 Crosscutting Issues

Building robotic systems is not just a technical challenge as it has

distinct social and ethical ramifications as well. We aim to provide

exposure of such issues in the discussions during lectures and labs,

but we also design a couple of specific activities to more actively

tackle some of these issues.

4.4.1 Industry Perspective: Guest Speaker. In each of the two prior

iterations of the course, we invited two industry speakers to visit us

and discuss their career paths, the trajectories of their companies,

and the challenges they face. Due to scheduling challenges, only

one of them was able to come each semester. The latest visitor is the

founder and CEO of a company that builds specialized self-driving

vehicles. Prior to the class period, we provided students with the

speaker bio and a link to the company website. We asked each

student to prepare two questions for the speaker.

We asked the speakers to give a background about their com-

pany and its products, explain what they work on day to day, and

generally provide the perspective of what it is like to work in robot-

ics. The early parts of the conversations were helpful to reinforce

the need to make learning robotics more accessible (P4) as

the speakers took us through their career path into developing

robot systems. They also emphasized the need for SE in robotics

(P5) as they kept referring to the difficulties identifying software

engineers ready to tackle the robot development challenges, and

hence the opportunities for future graduates with the skills we

were covering. Ultimately, the conversations helped to bring other

elements that were not purely technical, such as business pres-

sures and client demands that may not align with the technical

capabilities or concerns at all.

4.4.2 Ethics Lab. While most CS curricula require specific cover-

age of ethics [13], these materials are generally spread around a few

other courses and often not as relevant to robotics. Due to its physi-

cal nature, interactions with humans, and potential safety concerns,

we feel that it is imperative to provide specialized coverage of ethics

in the context of robots. Therefore, we dedicate a full lab to ethics,

aiming to highlight key issues in robotics and provide students

with a framework to explore ethical considerations in robotics. The

learning objectives for the lab are:

• How to synthesize meaningful questions from situations that

present ethical problems

• How to find and use related work to inform these questions

• How to connect the current state of the art to possible future

scenarios and their implications

• How to participate in debating ethical questions respectfully

and productively

We set up mock debates during the lab based on 5 prompts

that highlight ethical considerations of the present day, from au-

tonomous robots in warfare to the safety responsibilities of self-

driving cars. Ahead of the lab, students are split into teams and

given the side of for or against on each issue. In addition, we provide

students with a few resources for ethical frameworks and prior pub-

lished research in the field and encouraged them to do additional

research. On the day of the lab, students turn in a written outline

of their argument. During the lab, each pair of teams complete an

11-minute debate with time split between each side. The class then
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asks questions to each side, and the debate concludes with the rest

of the class voting on a winner for the debate, with the winner

being awarded extra credit. By thoroughly researching their as-

signed topic and interacting with each of the other debates through

questions and voting, we help students to think critically about

how ethics should inform research and engineering in robotics.

4.5 Project

The final project brings together all of the concepts introduced

throughout the course and lets the students apply these concepts to

a more complex problem. The project challenge is for the drone to

perform a search-and-rescue mission of a dog trapped in a disaster

area. Figure 3 shows the high-level stages of a successful search-and-

rescue: 1) searching the area for the dog using a map and coordinate

transforms from a satellite, 2) using perception to avoid unmapped

obstacles on the way and to pinpoint the dog’s exact location, 3)

picking the dog up by lowering the altitude of the drone directly

over the dog, and 4) finding a safe place to land. However, multiple

features of the environment are adversarial and work against the

drone completing its mission. For example, areas of the map may

randomly experience a fire the drone must avoid, and the dogmoves

about randomly when it is not under the drone.

To complete this challenge, students must incorporate con-

cepts introduced throughout the semester (I7). They must de-

velop a perception component to identify the dog when it is within

range of the down-facing onboard camera, handle noise when using

the down-facing LIDAR to find a place to land, plan a path through

the disaster area accounting for known and unknown obstacles,

keep track of the mission state in order to decide what to do next,

and calculate the position of the drone relative to the dog using a

global transformation from a satellite connection.

We purposefully give the students freedom by leaving the imple-

mentation for the project open-ended. Thus, students can design

the required capabilities using any techniques or strategies

they have learned throughout the course (I4). We provide a

code skeleton to form the basis of the environment and sensors

onboard the drone to unify the assessment, but the processing and

action related to the environment and sensors are up to the student.

Alongside the requirements put forth in the project description,

the checkpoints integrate SE concepts such as code reuse,

state modeling, and testing (I3). A significant portion of the

project involves code reuse, as much of the code in previous labs

can be reused or adapted for this challenge. Additionally, students

are required to implement a system state model to track the drone’s

progress and upcoming tasks. Finally, all subsystems need to pass

the provided test cases successfully, and students must write new

tests of their own.

Students are given 3.5 weeks to complete the final project. We

split the checkpoints into two stages to better accommodatedemon-

strations and conversation (I5) as well as allow students to more

easily work at their own pace in between sections (I8). The

first stage focuses on building up and testing new functionality

such as path planning through the disaster site, avoiding the fires,

and locating the dog through perception. The second stage focuses

on integrating that new functionality into the system, similar to

traditional engineering pipelines of complex projects.

Figure 3: High-level overview of the project challenge.

On the final day of class, each student delivers a 3-minute pre-

sentation showcasing their implementation. Students must explain

their design decisions and include a video of their solution in action.

Students describe which parts of the project were easy and difficult

to complete and demonstrate that their solution can successfully

rescue the dog 3 times in a row to show that their solution is stable.

We include a contest for the fastest completion of the mission to

add a bit more excitement.

4.6 Grading Philosophy and Criteria

We use four mechanisms to simultaneously assess student progress

and provide extra opportunities for feedback. First, each lab is

worth between 5% and 10% of the course grade. Students that do

not fully understand the assignment are given additional assistance

by the teaching staff. We give partial credit to late checkpoints to

encourage students to continue working with the material.

Second, we use biweekly open-book quizzes that aim to apply

or reflect on the application of a studied technique in a different

context. For example, the lectures on controllers may discuss a type

of controller applied to steer a bicycle, while the quiz requests its

application to an elevator while discussing when it may not work

as well on such a system. Quizzes are 8% of the grade.

Third, as mentioned earlier, for every class, at least one student

presents a 2-minute video of their choice of a robot, explaining the

most interesting techniques used, the challenges overcome by the

system and which ones are pending, and what are the societal im-

plications if successful. This presentation is only 2% of the student’s

grade, but it helps the students to connect the systems they admire

with the techniques we are covering to build them.

Last, grading for the final project operates like the labs. Again, the

project relies on automated tests, demonstration, presentation, and

discussion to determine the students’ success at various checkpoints.

The project is worth 20% of the course grade.

5 COURSE DELIVERY

The leading principle guiding the delivery of this course was to

lower the adoption barriers (P4). That applied to all the course

materials, from the lectures which were delivered synchronously

but also recorded for asynchronous delivery to students that were

unable to attend lectures, for example, due to residing in different

times zones, to the labs which are meant to be performed by the

students on their own and with limited resources. We describe three

key enablers for the course to align with this principle.
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5.1 Delivery Infrastructure

The course content was delivered through three mechanisms:

(1) Lab website, which contained the syllabus, lectures, lab in-

structions, and general announcements.

(2) Lab code, which contained the starting versions of all code

required by the students to begin implementing a lab.

(3) Lab solutions, future lab instructions, and future lectures

that were only available to the teaching staff.

To improve the ease of access and management, all three of these

collections of data were stored in three separate repositories hosted

on Github [14]. Using GitHub had various benefits beyond the tra-

ditional configuration and control management for the team. First,

it allows easy permission setting, allowing public data to be easily

shared with the students. Second, GitHub provides a mechanism to

automatically generate websites using GitHub Pages. This meant

that the hosting and publishing of the lab website was simple and

straightforward. The website contained all information, including

the VM setup, the lab instructions, and the lecture slides 1.

5.2 Lab Packaging

The website contained a set of instructions for each lab, and a link

to the VM. We preconfigured the VM to include ROS, our simulator,

and all libraries and packages required for the labs. Additional

elements for each were accessible in the class GitHub repository.

We describe the simulator and the VM in more detail later in this

section.

As discussed earlier, using a physical drone for labs comes with

many considerations such as space, storage, charging, maintainabil-

ity, safety, student and teaching staff expertise, remote support, and

the upfront cost of purchasing equipment. We believe that to lower

the entry barrier into robotics, systems operating in simulation

offers a compelling alternative.

Still, a simulator needed to meet four requirements: 1) be com-

putationally lightweight to operate on the students’ machines, 2)

contain a visual component allowing students to see how their

system would behave under different software solutions 3) be func-

tional and accurate enough to provide a realistic experience of a

drone’s functionality and behavior, including the sensors, physical

forces, and noise inherent in these systems, and 4) abstract enough

of the hardware to allow students to focus on implementing

their software solutions (I2, I6).

Accurately simulating the physics and kinematics of drones and

environments is complex and expensive. To address the complexity,

we built on an existing drone simulator, FlightGoggles[15], which

has a highly realistic but expensive visualization engine. Tomeet the

first requirement, we decoupled the expensive visualization engine,

retaining only the highly accurate kinematics and physics engine.

Furthermore, we pruned unnecessary components and reduced the

rates of many of the sensing and computation loops.

To meet the second requirement, we created a visualization com-

ponent building on a bare-bones quadrotor simulator [20], and

adding capabilities such as the ability to display trajectories, ob-

stacles, and dynamic objects such as a ground robot. By this point,

we had partially met the third requirement. To fully meet the third

1The labwebsite can be found at https://less-lab-uva.github.io/CS4501-Website/. Please
also feel free to contact the authors of this paper for the lab solutions.

Figure 4: The final simulation showing drone navigation

through a series of obstacles.

requirement, we increased the simulator’s functionality by incor-

porating a pressure sensor, a down-facing camera, a range finder,

and a LIDAR. We also added features such as obstacle collision

detection and external entities like a “satellite” that returned the

drone’s position in a different frame of reference and sensor noise

controls. The last requirement was met through our abstraction

of the hardware inside the simulator (I2). We designed the sim-

ulator only to expose the sensor readings and actuation commands.

Thus, all of the kinematics, physics, visualization, and hardware

were hidden from a student’s perspective, and the simulator could

be treated as a black box, allowing students to focus on the software

implementation of algorithms and techniques taught in the class

while also allowing us to control the levels of noise and precision

in the sensors.

The simulator’s visualization component is shown in Figure 4

with the drone (green dot with red and blue arms), and a planned

path (gray dots) through a series of obstacles (blue). The figure

also shows a ground robot (red dot) used in one of the labs. Note

that many of the interesting components of the simulator lie in the

background, for example, where we could adjust the noise levels

based on the lab, add or remove sensors on the drone when needed

by the students, or adapt the simulation rate based on students’

hardware. This ability to provide students with an inexpensive yet

highly functional simulator was critical to this course’s success.

We designed the simulator to run one of the most stable ROS

versions, ROS Kinetic, on a machine running Ubuntu 18.04. Unfortu-

nately, many students do not have access to an Ubuntu machine and

run either Windows or Mac OS. This meant that we needed to de-

sign a solution that was OS-independent. A natural solution to this

was to use a VM.We selected a freely available and OS-independent

downloadable virtualization environment, VirtualBox [23] which

further lowered the barrier for entry to the students. We tested the

VM on systems that provided only 2GB of RAM, 2 CPU cores, and
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10GB of hard drive space to the virtual machine. These require-

ments meant that almost all laptops or desktops sold today, even

with minimum specifications, are able to install and run the virtual

machine and simulation. The use of virtual machines also shifted

the expertise required from setting up robotics simulation software

to installing a VM. While students may not have had prior expe-

rience with VMs, VM software is well documented, and teaching

staff can preconfigure most aspects of the experience by delivering

the VM with the required libraries and tools.

5.3 Required Teaching Personnel

The first iteration of the course included the instructor and two

part-time teaching assistants. The second iteration included three

part-time teaching assistants. For both of these iterations, as the

course was being developed and refined, a significant amount of

time was invested in the lecture and lab design. We expect that cost

to decrease as the course stabilizes.

However, another significant investment focused on supporting

active learning. We wanted students to practice and reflect on

what they had learned. The practical components of this lab can

happen in the students’ own time, with some support when they get

stuck or have questions. For the reflection, however, we found that

the checkpoints were critical to making sure the students were

up to date and understood the concepts through discussion

(I5, I8). These discussions on the topics covered also meant that

students had a higher chance of retaining the knowledge as they

were encouraged to engage and think about what they had learned

and understood while explaining their work verbally using course

concepts. These interactions and frequent checks necessitated a

high teacher-to-student ratio (1 to 5) with teaching assistants that

have a deep understanding of the content to identify and correct

any misunderstandings by the students. Investing fewer teaching

resources in this class is likely to impact the effectiveness of the

learning experience, but this is something we still have to assess.

5.4 Going Virtual due to COVID-19

We first designed and began teaching the course immediately prior

to the COVID-19 pandemic, with the first iteration of the course

transitioning to virtual learning mid way through the semester.

Along with many others working and learning from home, we had

to move quickly to rely heavily on virtual platforms for course

delivery during the transition. We played with several platforms,

but reliability, availability, and cost being the drivers, we ended

up using Zoom [35] extensively (caveat: our school already had a

license).

We applied what we learned from this experience to improve

and reteach the course fully virtually the following year during

our second iteration. We employed Zoom to deliver the course

lectures. We extensively used its chat capabilities for questions and

its polling capabilities to keep the students engaged, and have some

quick, anonymous assessments. We also took advantage of Zoom

for recording the lectures and making them available to everyone

asynchronously. For the labs, we also used Zoom, especially the

breakout rooms capabilities, to partition the course into smaller

groups where students could work on the labs in tandem. This

facilitated student interactions and helped the teaching staff to visit

the rooms to check progress. For the labs, we also relied extensively

on Slack [30] to organize requests for assistance when they came

in rapid succession.

6 LESSONS LEARNED

In this section, we highlight some key takeaways from our expe-

riences teaching this course across two iterations, reflecting on

what elements worked well and what areas need improvement or

additional consideration for the next iteration.

6.1 What worked well

The pairing of SE and robotics topics throughout the course

(I3) played a vital role in how students designed, developed, and

presented their code. From a general application of SE principles,

we found, for example, that students at the beginning of the course

were much more likely to design their application into different

classes or processes improperly. Our consistent reiteration of sound

SE principles like architecture, modularization, and component

reuse reduced how often we found these cases later in the course.

In terms of specific pairings of SE to robotics, we were surprised

by how quickly students embraced practices like testing through

simulation, debugging with capture and replay, or the programming

of deployment files. Connecting such practices to domain challenges

was key as other SE phases like specifications that were not paired

as well were not equally embraced.

Building flexibility into the course (I8) was another key to

success. This was especially important due to the pandemic, with

course delivery occurring remotely and a myriad of challenges

external to the course. As a result, we found that flexibility in all

aspects of the course was required for success. Flexibility was built

into the lectures by giving students access to recordings and slides.

The labs were designed with checkpoints breaking the lab up into

bite-sized chunks, allowing students to work at their own pace and

seek guidance and support from the teaching assistants.

The investment made for the use of a simulator (I6) was ex-

tremely rewarding. Although the system and simulator will likely

continue to evolve, we found that even a lightweight simulator

can sufficiently capture system dynamics and kinematics, as well

as accurately emulate sensors, including noise and uncertainty, to

provide the students with a rich experience. This was especially

apparent during conversations with students during checkpoints

who could quickly identify common problems faced in robotics

after only experiencing a simulated drone.

Both the use of different levels of abstraction (I2) and in-

cremental scaffolding of course materials (I7) provided many

benefits. First, we rarely perceived students being overwhelmed

by the introduced material, and when they were, we could guide

them to a previous lecture or lab. Second, students were often able

to build on or connect to previous labs and lectures when complet-

ing a new lab, and the same applied to checkpoints. Third, while

incrementally building a solid foundation, we were still able to

have a final project that included the development of all software

components of a robot pipeline. Fourth, from a delivery perspective,

it let us manage the progress and pace.

Our team structure and process was also effective for design-

ing and evolving the course. We had a team of two or three graduate
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students and a faculty member refining the upcoming content, tak-

ing different roles to either lead the design of the lab, its implemen-

tation, its validation, or its write-up. The rotation of roles enabled

all team members to acquire substantial knowledge in teaching and

quality assessment while also providing the students with labs of

similar structure and quality.

Students demonstrating and reflecting during checkpoints

(I5) to the teaching staff was also particularly effective for providing

additional learning opportunities. It helped foster students’ knowl-

edge in areas they were interested in, as the teaching staff could

expand on the topic and give students more depth, and it provided

an early opportunity to reinforce lecture concepts and nudge the

student in the right direction to prevent their misunderstanding

from propagating further in the assignment.

6.2 What needs revision

There are several aspects of the course that require adjustments to

address recurring challenges.

The diversity of students’ machinery presents an continual chal-

lenge to provide the same opportunities, grading criteria, and expe-

riences to all students. Despite our efforts to provide a lightweight

virtual machine, system, and simulator, we had a few students with

older laptops that struggled with the more resource-intensive labs,

such as the perception lab that requires multiple matrix operations

per cycle to process images. One of the features we built into the lab

for precisely this problem was the ability to run the simulator at a

slower rate, slowing down the simulated time. However, an unfore-

seen yet obvious consequence in retrospect was the additional time

needed by those students with a slower simulator to iterate over

different implementations and designs. This made it more difficult

to make progress at the same rate as students with faster machines.

Students with weaker machines or connectivity also struggled to

run video conferencing software concurrently with the simulation,

making it difficult for teaching staff to provide remote support in

a timely manner. In these cases, we asked the students to either

connect to our online sessions through another device or provide

screenshots of the lab so they did not have to run both the simulator

and video conferencing software simultaneously. Moving forward,

we continue to examine other possibilities for delivering the labs

and simulation to students.

The identification of fundamental robotic topics andmatch-

ing SE practices (P1, P2) is consolidating, but it is likely to remain

in constant refinement as both fields evolve. For example, the emer-

gence of ROS2.0 [31] and aspects like the support for real-time

systems or the operation of multiple robots opens new opportuni-

ties for more exciting labs in robotics, but also requires coverage

of new SE material like modeling time constraints and managing

multiple deployments. We anticipate this to be an ongoing process.

The checkpointing practice, while integral to the success of the

course, does come with drawbacks. We aimed to give students

design freedoms in labs and project design (I4); however, the

more freedom a student is given to design their solution, the more

time it takes to justify their choices if they do not fully understand

them during checkpoints. This requires both time and expertise

from teaching staff to follow what a student is trying to implement.

We will continue refining lab deliverables to find the right balance

in this area and may need to make some concessions in the use of

checkpoints to scale the course up with the existing resources.

Another challenge is defining a set of prerequisites for the

course that is inclusive enough to allow for a wide variety of stu-

dents with different backgrounds while also ensuring that a student

has the skills required to learn and succeed in this class. In the

first iteration of the course we were relaxed in the enforcement of

prerequisites and found that several students, particularly students

with limited software development experience, found this class too

challenging. In the second iteration, we enforced the prerequisites

to require at least a software engineering and an operating system

course and found far fewer students struggling but also a smaller

course. We are still trying to find the right balance.

Finally, and as previously mentioned, the key pending activity is

the design and implementation of an instrument to empirically

assess the success of this course in terms of its goal and objec-

tives. Thus far, we have received positive feedback but lack solid

assessment instruments to judge the effectiveness of the course

to meet its goal and learning objectives. For example, the course

evaluations were extremely positive, the instructor received mul-

tiple complimentary emails after the class was completed about

the course content and delivery (which is not usually the case),

and to our knowledge an impressive 10% of the class has joined

the robotics industry at this time. Such feedback is encouraging

and supports the need for a formal course evaluation in the next

iteration.

7 CONCLUSION

Through this paper we have introduced a course aiming at equip-

ping students with a unique understanding of the challenges in

developing the software underlying robotic systems and a set of

tools to address those challenges. We have shared the guiding prin-

ciples of the course, highlighted the most important pedagogical

innovations, described its structure and delivery, and analyzed what

aspects worked and which ones needs revision.

We are planning several changes to the course content and de-

livery in the future. First, we will refine the integration of software

engineering and robotic materials, such as through the addition of

formal specifications as part of the planning lectures. We will also

iterate on key labs, such as the control lab, where the abstractions

did not offer enough flexibility to accommodate different controller

implementation and manipulate noise accurately. Second, we aim

to further assess the course in terms of achieving its learning objec-

tives. Third, we are workingwith other institutions to facilitate their

adoption of the course materials so that they may create different

paths through the course to fit diverse audiences.
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