Check for
Updates

2020 IEEE/ACM 42nd International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)

Blending Kinematic and Software Models for Tighter
Reachability Analysis

Carl Hildebrandt Sebastian Elbaum Nicola Bezzo
The University of Virginia The University of Virginia The University of Virginia
chéwd@virginia.edu selbaum@virginia.edu nbébe@virginia.edu
ABSTRACT Il Robot

Reachable sets are critical for path planning and navigation of mo-
bile autonomous systems. Traditionally, these sets are computed
using system models instantiated with their physical bounds. This
exclusive focus on the physical bounds belies the fact that these
systems are increasingly driven by sophisticated software compo-
nents that can also bound the variables in the system models. This
work explores the degree to which bounds manifested in the soft-
ware can affect the computation of reachable sets, introduces an
analysis approach to discover such bounds in code, and illustrates
the potential of that approach on two systems. The preliminary
results reveal that taking into consideration software bounds can
reduce traditionally computed reachable sets by up to 91%.

CCS CONCEPTS

- Computer systems organization — Robotics; « Software
and its engineering — Software performance; Automated
static analysis.

KEYWORDS
Mobile Robots, Reachable Sets, Software Constraints

ACM Reference Format:

Carl Hildebrandt, Sebastian Elbaum, and Nicola Bezzo. 2020. Blending Kine-
matic and Software Models for Tighter Reachability Analysis. In New Ideas
and Emerging Results (ICSE-NIER20), May 23-29, 2020, Seoul, Republic of
Korea. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3377816.
3381730

1 INTRODUCTION

As mobile autonomous systems increase in popularity, it becomes
more critical to accurately predict the future states that may be
covered by the system during its operation. Such predictions can
assist a system in determining actions that lead to favorable states
while avoiding detrimental ones[16]. Reachability analysis is one
common approach to provide such predictions. Given a starting
state and a time horizon, this analysis iteratively applies the set
of admissible control sequences on a system model to compute
the set of reachable states. Today, we find that the computation of
reachable sets is at the center of many challenging tasks for mobile

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE-NIER’20, May 23-29, 2020, Seoul, Republic of Korea

@ 2020 Association for Computing Machinery.

ACMISBN 978-1-4503-7126-1/20/05...$15.00
https://doi.org/10.1145/3377816.3381730

Reachability with Physical Bounds
Reachability with Software Bounds

Z Postion
S
8

>

Y Position 15 -1 X Postion

Figure 1: Reachable volume when parameterized with phys-
ical bounds (outer-lighter shade) and with the addition of
software bounds (inner-darker shade), with a single time
step ¢ = 1s. Just considering the physical bounds results in
an over-approximation of the robots reachable set.

autonomous systems such as obstacle avoidance [13], aircraft colli-
sion avoidance [10], and system monitoring to maintain safety and
liveness[15].

There are many methods to compute reachable sets, ranging from
numerical approximations to purely analytical methods . The choice
of method depends on many factors, including what constitutes a
state, what is the language of control actions, how long is the time
horizon, whether under- or over-approximations are desirable, and
the importance attributed to the efficiency of computation.1

Independent of the selected method, the calculation of the reach-
able sets is parameterized exclusively with the system’s physical
attributes. For example, for the differential drive robot we study
later, the system’s kinematic model® is instantiated with the robot’s
maximum physical velocity and turning rate. Similarly, when com-
puting the reachable set for a quadrotor, which we study later, the
physical attributes are used to bound pitch and roll.

This exclusive focus on the physical attributes of such systems
belies the fact that these systems are increasingly driven by so-
phisticated software components that juxtapose another set of con-
straints on the system’s potential state and behavior. The insight
of this work is that the precision of a reachable set could be dramati-
cally higher by considering the constraints imposed by software. For
example, Figure 1 shows the reachable volumes of a quadrotor we
later study, starting at a hovering state depicted with the central
dark dot. The reachable set is computed using t = 1s, the volume
in the outer-lighter shade is computed using physical bounds, and
the inner-darker shade adds the bounds found in software. The

!For more details on reachable sets we refer the reader to the following papers [1, 6].
%A kinematic model is a mathematical model describing the motion of an object
without considering the forces that lead to that motion.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3377816.3381730&domain=pdf&date_stamp=2020-09-18

34

Blending Kinematic and Software Models for Tighter Reachability Analysis

Simple_trajectory_generator.cpp Constraints

1) .
2) double min_vel x = limits->min_vel x; =

_vel_x: [0.5; 0.5]

3) double max_vel_x = limits->max_vel_x;

e Ly dist: [unk; unk]
s) if (! use_dwa_) {

6) double dist = hypot(goal[®] - pos[e], - ymax(min([0.5; 0.5}, _), 0)
goal[1] - pos[1]);) max([unk; 0.5], 0)

7) max_vel _x = std::max(std::min(max_vel_x, max_vel_x: [0; 0.5]
dist / sim tife), min vel x)5i = L min(r0; 0.51,)

8) max_vel[@] = std::min(max_vel_x, .-

max_vel[0]: [unk; 0.5]

ymin([unk; 0.5], _)
max_vel[0]: [unk; 0.5]

vel[@] + acc_lim[@] * sim_time_);
9)
10) } else {
11) max_vel[@] = std::min(max_vel_x,
vel[@] + acc_lim[@] * sim_period_);

max_vel[0]: [unk; 0.5] &

12)
13) }
4) ...

max_vel_x: [0.5; 0.5]

\ Constraints

Planner.yaml| min_vel_x: [0; 0]
D e —— T —
2) max_vel x: 0.5 max_vel_x: [0.5; 0.5]
3) min_vel x: 0.0 =l »min_vel_x: [0; 0]
4

Figure 4: Erle-Copter and Husky [5][9]
which are calls to configuration files and standard library functions.
For brevity, we show the analysis of leaf nodes in the call graph
(base cases) and their parent node simpleTrajectoryGenerator.
The first base case which is reached is the configuration file plan-

ner.yaml, which assigns default values to max_vel_x and min_vel_x.

Intervals for these variables have lower and upper bounds equiva-
lent to the assigned constant. These intervals are returned to the
previous function in the stack simple_trajectory_generator.cpp.
Line 2 and 3 of simple_trajectory_generator.cpp are assignment
statements, thus the intervals from planner.yaml are transferred
with no modification. Line 7, makes calls to the std::max and std::min
functions which are also base cases. Interval analysis of a std::min
function with parameters 0.5 and an unknown value results in an
interval with the upper bound set to 0.5 and the lower bound set to
unknown. Similarly, interval analysis of sid::max between 0.5 and
0 results in the upper bound staying at 0.5.

Interval analysis is not path sensitive and computes an interval
for lines 8 and 11, similar to that of line 7. The union of the results
from line 8 and 11 are used. In this case, they both have the same
intervals and thus remain unchanged at [unk, 0.5]. This results in
a max_vel[0] with an upper bound of 0.5. The lower bound for
min_vel is computed using our approach and found to be 0. As the
call stack is resolved, the intervals are transferred back to cmd_vel,
which has an interval [0; 0.5]. Clearly, using this technique will re-
sult in tighter reachable sets when the robots software bounds limit
the robots physical capabilities. This abbreviated example belies
some of the complexity of traversing call chains and computing
the intervals for target program variables. This approach does not

.............. cmd_vel: [0; 0.5]

dist: [unk; unk]

ICSE-NIER’20, May 23-29, 2020, Seoul, Republic of Korea

Call Graph move_base.cpp

1) computeVelocityCommands(cmd_vel)
computeVelocityCommands() 2) .o
3) publish(cmd_vel)

SimpleTrajectoryGenerator()

max_vel_x: [0; 0.5]

[unk; 0.5]

rx_velm‘ max_vel[0]: [unk; 0.5]
~N

account for potential unsoundness of the approach that could be
addressed with more precise analysis.

4 EXPLORATORY STUDY

We conducted a preliminary study to investigate: 1) What bounds
can be found in software that may be relevant to the systems
kinematic models? 2) How different are software versus physi-
cal bounds? 3) What is the impact of those software bounds on the
computed reachability sets?

4.1 Systems Overview

We use two robots for illustration. The first system is Husky from
Clearpath Robotics [3] (right in Figure 4). Our analysis targets
Husky’s autonomous planning and exploration with simultane-
ous localization and mapping (SLAM) based on the frontier ex-
ploration software [14]. More specifically, our approach targets
the move_base node in the navigation stack, which controls the
physical attribute velocity. The second system was the Erle-Copter
quadrotor [7] (left in Figure 4). It is open-source and comes with
support for various controls and applications. The particular appli-
cation selected allowed the drone to track and subsequently follow
a ground marker by calculating pitch and roll values.

Both robots were deployed in an open world with no obstacles.
We computed traditional reachability analysis based on the kine-
matic models for each robot. The robots initial position was (0, 0)
for the Husky and (0, 0, 20) for the Erle-Copter. Kinematic inputs
v were generated by creating 30 linearly spaced samples between
each of the input bounds. The robots next state was then calculated
using all permutations of the sampled input.

The kinematic models of the robots define the input target vari-
ables. Husky’s inputs are velocity and turn rate. The physical
bounds of the velocity are [-1m/s, 1m/s] [4]. For Erle-Copter the
maximum pitch and roll are set by the default maximum tilt param-
eter (MNT_ANGMAX_TIL) of the controllers firmware. The thrust
value was calculated using the datasheet of the specific motors [12].
The physical bounds for both robots are in Table 1.

ICSE-NIER’20, May 23-29, 2020, Seoul, Republic of Korea

Table 1: A comparison of the physical and software bounds.

Robot Type Physical Bounds Software Bounds
Husky Max Velocity: 1 m/s Max Velocity : 0.5 m/s
(Differential | Min Velocity: =1 m/s Min Velocity: 0 m/s
Drive) Turn Rate: 2 rad/s Turn Rate: 0.63 rad/s
Erle 'Ithrust: 45 N Thrust: ?N
Quadrotor Max Pitch: 45 degrees | Max Pitch: 19 degrees
Max Roll: 45 degrees Max Roll: 19 degrees

Table 2: Reachable set for physical and software bounds.

Robot Fhysically Software Bound .

type Boird e Reachability Rediiction
Reachability

Max Velocity: 17.10m* 16%

Differential Min Velocity: 15.10m" 25%

Drive 20.24m" Velocity: 3.77m" 81%

(t =3s) Max Turn Rate: 17.06m> 16%

All Constraints: 1.85m” 91%

— , | MaxPitch 343428rr313 52%

(t = 3s) 716930m Max Roll: 343428 m . 52%

All Constraints: 163563m 77%

4.2 Preliminary Results

Our approach found software bounds for 5 out of 6 target program
variables, the exception being Erle-Copter’s Thrust, which was
available but just not in the scope of files we analyzed. For Husky,
the analysis traversed a call chain of 15 calls in order to capture all
the software constraints, while for Erle-copter, the analysis only
required the exploration of 2 function calls. In Table 1 we observe
that there is a clear reduction from the physical to the software
bounds, with software bounds being far tighter. An interesting
finding illustrating the extent of those tighter bounds was found in
the Husky robot, which is physically capable of going backward as
fast as it can go forward, but our analysis revealed that the software
would never publish negative velocities.

Given the identified physical and software bounds, we run two
sets of simulations for 3-time steps (At = 1s) for both robots using
the physical bounds and the software bounds. In both cases, the
reachable set was calculated. Table 2 shows how the software con-
straint on each target program variable reduces the reachable set.
For the differential drive robot, bounding velocity reduces the reach-
able area by 81%; bounding the turning rate reduces the reachable
area by 16%; applying all software constraints reduces the reachable
area by 91%. We find similar results for the Erle-Copter. Applying
software constraints to either the pitch or roll reduced the reachable
area by 52%. Applying all software bounds results in a 77% reduction
of the reachable volume.

We now illustrate the impact of such reductions over time. The
Husky physically bound reachable set is shown as dotted lines in
Figure 5. The software bound reachable set, shown using solid lines,
is contained within the reachable set computed with the physical
bounds. Furthermore, the physical bounds reachable set grows
much faster than the set computed with the software bounds. For
example, the Husky’s software bound reachability at t = 3s is a subset
of the physically bounded reachable set at t = 2s.

5 CONCLUSION

We have explored a different approach to compute reachable sets
by leveraging the fact that mobile autonomous systems are increas-
ingly affected by software bounds. Our preliminary findings indi-
cate that the approach has significant potential to generate tighter

Carl Hildebrandt, Sebastian Elbaum, and Nicola Bezzo

- - Physical Bounds
, |[=Software Global Bounds

Y Position
o

-2.5 L L

X Position
Figure 5: Husky reachable set using physical bounds (dotted
lines) versus software bounds (solid lines) for ¢ = 3s.

reachable sets, which can lead to safer, more effective planning and
navigation. Future work will address the sources of imprecision
in the approach by incorporated more sophisticated analyses. We
also plan to determine the impact of such bounds through a more
extensive assessment of our approach.

ACKNOWLEDGMENTS

This work is supported in part by the National Science Foundation
Award #CCF-1718040. We thank the developers of Husky and Erle-
Copter for making their systems and software available.

REFERENCES

[1] Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. 2017. Hamilton-
Jacobi reachability: A brief overview and recent advances. In 2017 IEEE 56th
Annual Conference on Decision and Control (CDC). IEEE, 2242-2253.

[2] David Callahan, Alan Carle, Mary W. Hall, and Ken Kennedy. 1990. Constructing
the procedure call multigraph. IEEE Transactions on Software Engineering 16, 4
(1990), 483-487.

[3] Clearpath Robotics. 2019. Husky - Unmanned Ground Vehicle. https://www.
clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/. [Online; ac-
cessed 27-February-2019].

[4] Clearpath Robotics. 2019. Husky Specifications. https://storage.pardot.com/
92812/4030/Husky_DataSheet_2016.pdf. [Online; accessed 29-February-2019].

[5] DabitIndustries. 2019. Erle-Copter drone kit. https://dabit.industries/products/
erle-copter-drone-kit. [Online; accessed 29-February-2019].

[6] Jerry Ding, Jeremy H Gillula, Haomiao Huang, Michael P Vitus, Wei Zhang, and
Claire J Tomlin. 2011. Hybrid systems in robotics. IEEE Robotics & Automation
Magazine 18, 3 (2011), 33-43.

[7] Erle Robotics. 2019. Erle - Copter. http://docs.erlerobotics.com/erle_robots/erle
copter. [Online; accessed 27-February-2019].

[8] William H. Harrison. 1977. Compiler analysis of the value ranges for variables.
IEEE Transactions on software engineering 3 (1977), 243-250.

[9] IEEE. 2019. Robots - Husky. https://robots.ieee.org/robots/husky/.

accessed 29-February-2019].

Y. Lin and 8. Saripalli. 2017. Sampling-Based Path Planning for UAV Collision

Avoidance. IEEE Transactions on Intelligent Transportation Systems PP, 99 (2017),

1-14. https://doi.org/10.1109/TITS.2017.2673778

Anders Meller and Michael I Schwartzbach. 2012. Static program analysis. Notes.

Feb (2012).

T-Motor. 2019. MN2212 KV920-V2.0 Specification. http://store-en.tmotor.com/

goods.php?id=389. [Online; accessed 29-February-2019].

Abraham P. Vinod, Baisravan Homchaudhuri, and Meeko M. K. Qishi. 2016.

Forward stochastic reachability analysis for uncontrolled linear systems using

Fourier Transforms. CoRR abs/1610.04550 (2016). http://arxiv.org/abs/1610.04550

Brian Yamauchi. 1997. A frontier-based approach for autonomous exploration.

In cira. IEEE, 146.

E. Yel, T. X. Lin, and N. Bezzo. 2017. Reachability-based self-triggered scheduling

and replanning of UAV operations. In NASA/ESA Conference on Adaptive Hardware

and Systems (AHS). 221-228.

Esen Yel, Tony X Lin, and Nicola Bezzo. 2018. Self-triggered Adaptive Planning

and Scheduling of UAV Operations. In 2018 IEEE International Conference on

Robotics and Automation (ICRA). IEEE, 7518-7524.

[Online;

=
=

—
-

=
e

